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Abstract

This paper is about numerical fluxes for hyperbolic systems and we first present a numerical flux, called GFORCE, that
is a weighted average of the Lax-Friedrichs and Lax-Wendroff fluxes. For the linear advection equation with constant coef-
ficient, the new flux reduces identically to that of the Godunov first-order upwind method. Then we incorporate GFORCE
in the framework of the MUSTA approach [E.F. Toro, Multi-Stage Predictor–Corrector Fluxes for Hyperbolic Equations.
Technical Report NI03037-NPA, Isaac Newton Institute for Mathematical Sciences, University of Cambridge, UK, 17th
June, 2003], resulting in a version that we call GMUSTA. For non-linear systems this gives results that are comparable to
those of the Godunov method in conjunction with the exact Riemann solver or complete approximate Riemann solvers,
noting however that in our approach, the solution of the Riemann problem in the conventional sense is avoided. Both the
GFORCE and GMUSTA fluxes are extended to multi-dimensional non-linear systems in a straightforward unsplit man-
ner, resulting in linearly stable schemes that have the same stability regions as the straightforward multi-dimensional exten-
sion of Godunov’s method. The methods are applicable to general meshes. The schemes of this paper share with the family
of centred methods the common properties of being simple and applicable to a large class of hyperbolic systems, but the
schemes of this paper are distinctly more accurate. Finally, we proceed to the practical implementation of our numerical
fluxes in the framework of high-order finite volume WENO methods for multi-dimensional non-linear hyperbolic systems.
Numerical results are presented for the Euler equations and for the equations of magnetohydrodynamics.
� 2006 Elsevier Inc. All rights reserved.
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1. Introduction

Numerical methods for solving non-linear systems of hyperbolic conservation laws via finite volume
methods or discontinuous Galerkin finite element methods require, as the building block, a monotone
numerical flux. The choice of the building block has a profound influence on the properties of the resulting
schemes. There are essentially two approaches for providing a monotone numerical flux, the simplest of
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which utilizes a symmetric stencil and does not explicitly make use of wave propagation information, giving
rise to centred or symmetric schemes [19,13,15,18,38,41,21,4]. A more refined approach utilizes wave prop-
agation information contained in the differential equations. This is done through the exact or approximate
solution of the Riemann problem, giving rise to upwind methods [7,12,26,46,28]. For up-to-date background
on these methods see, for example [11,39,20,17].

Within the class of existing monotone first-order fluxes, the first-order upwind scheme of Godunov is the
best, it has the smallest local truncation error. However, the superior accuracy of established upwind meth-
ods comes at a cost, one must solve exactly or approximately, the Riemann problem. Conventional Rie-
mann solvers are usually complex and for many hyperbolic systems of practical interest are not
available, such as for models for compressible multi-phase flows. It is thus desirable to construct a numer-
ical flux that emulates the best flux available (upwind) with the simplicity and generality of symmetric
schemes.

In this paper we first present a new flux, called GFORCE, that is a particular average of symmetric fluxes
and which reproduces Godunov’s upwind scheme for the linear advection equation with constant coefficient.
For non-linear systems, it is found that this flux gives superior results to those of the whole family of incom-

plete Riemann solvers that do not explicitly account for linearly degenerate fields, such as the HLL Rie-
mann solver [14] and flux vector splitting schemes. Then we build upon the newly proposed MUSTA
(multi-staging) approach [34] to construct schemes that have the simplicity and generality of symmetric
schemes and accuracy that is comparable to that of the best upwind schemes for general hyperbolic systems.
This is achieved by incorporating the GFORCE flux into the MUSTA approach, as predictor and corrector.
It is found that for the linear advection equation with constant coefficient the resulting MUSTA schemes
reproduce the Godunov upwind scheme identically, for any number of stages. For non-linear systems,
the MUSTA scheme with one or two stages gives results that are indistinguishable from those of complete

Riemann solvers, such as the exact Riemann solver, Roe’s approximate Riemann solver [28] and HLLC
[45,42].

For multi-dimensional hyperbolic systems, we utilize the proposed numerical fluxes in the setting of
straightforward unsplit finite volume schemes, in which the numerical fluxes are evaluated along the direction
normal to the interface, at each integration point. For the linear advection equation with constant coefficients,
the resulting simultaneous updating schemes are linearly stable in two and three space dimensions and the sta-
bility region is identical to that of the Godunov upwind method. The proposed numerical fluxes are used in the
setting of TVD schemes and in the framework of WENO finite volume methods for one and multi-dimen-
sional non-linear hyperbolic systems. Finally, we assess the performance of the schemes on carefully chosen
test problems and show results for the one- and two-dimensional Euler equations and for the equations of
Magnetohydrodynamics in one space dimension.

The rest of the paper is organized as follows: Section 2 introduces the finite volume framework and
recalls well-known numerical fluxes. In Section 3 we present the new numerical flux GFORCE. In Section
4 we incorporate this flux into the MUSTA framework. In Section 5 we illustrate the application of the
proposed schemes to the solution of various hyperbolic problems. Conclusions are drawn in Section 6.
In the Appendix we give an algorithm in the form of a FORTRAN program to compute an example of
a numerical flux, as proposed in this paper.
2. The framework

Finite volume and discontinuous Galerkin finite element methods rely on a monotone, first-order intercell
numerical flux, the building block of the schemes. Here, we are concerned with numerical fluxes in the frame of
the finite volume approach.
2.1. Finite volume schemes

For the purpose of this section it is sufficient to consider a time-dependent non-linear system of hyperbolic
conservation laws in two space dimensions
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otQþ oxFðQÞ þ oyGðQÞ ¼ 0; ð1Þ

in which Q is the vector of conserved variables and F(Q) and G(Q) are the vectors of fluxes in the Cartesian
coordinate directions x and y, respectively. In the presence of discontinuous solutions one uses the integral
form of (1), which is obtained, for example, by integrating (1) on a control volume V with boundary A,
leading to
d

dt

Z Z
V

QdV ¼ �
Z

A
ðF;GÞ � n dA. ð2Þ
Here n is the unit vector normal to the boundary A pointing in the outward direction. In the finite volume
approach one does not require a change of coordinates, such as body-fitted coordinates, to deal with do-
mains whose boundaries are not aligned with the Cartesian directions. Discretization can be performed di-
rectly in physical space. Assuming the domain of interest has been discretized by an appropriate mesh, we
then apply (2) to a finite volume, or cell, Vi to construct numerical schemes. In particular, a fully discrete
finite volume scheme reads
Qnþ1
i ¼ Qn

i �
Dt
DV i

XN

s¼1

LsT
�1
s Fði;sÞ. ð3Þ
Here Qn
i is the integral average of Q in volume Vi at time level n, DVi is the area of Vi, Dt is the time step, N is

the total number of faces of Vi, Ls is the length of face s, Ts is the rotation matrix corresponding to side s and
T�1

s is its inverse, F(i,s) is the numerical flux for face s in the direction u normal to it, and is obtained by solving
the Riemann problem in the direction u, namely:
orQþ ouFðQÞ ¼ 0; u 2 ð�1;1Þ; r > 0

Qðu; 0Þ ¼ Q0
i ¼ TsðQn

i Þ if u < 0;

Q0
s ¼ TsðQn

s Þ if u > 0.

( 9>=
>; ð4Þ
Here r = t � tn is local time; Qn
s is the integral average of the conserved variable vector in the control volume

adjacent to Vi having s as a common face. Ts aligns the original initial data in the normal direction u to the
interface s, prior to solving the Riemann problem. The inverse matrix T�1

s restores back the flux information to
the Cartesian frame.

From this point on, the discussion on the numerical flux in an arbitrary direction u can be reduced to that of
the augmented one-dimensional problem in the x-direction, say, without loss of generality.
2.2. Numerical fluxes

Consider the m · m one-dimensional system of hyperbolic conservation laws
otQþ oxFðQÞ ¼ 0; ð5Þ

where Q is a vector of m components, the conserved variables, and F(Q) is the corresponding vector of fluxes.
The finite volume scheme to solve (5) reads
Qnþ1
i ¼ Qn

i �
Dt
Dx
½Fiþ1

2
� Fi�1

2
�; ð6Þ
where Fiþ1
2

is the numerical flux, Dx is the length of the control volume and Dt is the time step.
Godunov’s upwind method [12] defines the intercell numerical flux Fiþ1

2
in terms of the solution, if available,

of the corresponding Riemann problem
otQþ oxFðQÞ ¼ 0; x 2 ð�1;1Þ; t > 0;

Qðx; 0Þ ¼
Qn

i if x < 0;

Qn if x > 0.

�
9>=
>; ð7Þ
iþ1
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The so-called Riemann fan in the x � t plane consists of m + 1 constant states separated by m wave families,
each one associated with a real eigenvalue k(k). The similarity solution of (7) depends on the ratio x/t and is
denoted by Qiþ1

2ðx=tÞ. The Godunov intercell numerical flux is found by first evaluating Qiþ1
2
ðx=tÞ at x/t = 0, that

is along the t-axis, and then evaluating the physical flux vector F(Q) in (7) at Qiþ1
2
ð0Þ, namely
FGodU
iþ1

2
¼ FðQiþ1

2
ð0ÞÞ. ð8Þ
The exact solution of (7) for complicated systems will generally involve the iterative solution of a non-linear
system and thus in practice, whenever available, one uses approximate Riemann solvers. For a review on Rie-
mann solvers see, for example [39].

Non-upwind (or centred, or symmetric) schemes do not explicitly utilize wave propagation information and
are thus simpler and more generally applicable. Commonly, the numerical fluxes can be computed explicitly as
algebraic functions of the initial condition in (7), namely
Fiþ1
2
¼ Fiþ1

2
ðQn

i ;Q
n
iþ1Þ. ð9Þ
One may interpret centred fluxes as resulting from a low-level approximation to the solution of the Riemann
problem (7), in which the Riemann fan is not opened. Two classical centred fluxes are the Lax-Friedrichs
flux
FLF
iþ1

2
¼ 1

2
½FðQn

i Þ þ FðQn
iþ1Þ� �

1

2

Dx
Dt
½Qn

iþ1 �Qn
i � ð10Þ
and the two-step Lax-Wendroff flux
FLW
iþ1

2
¼ FðQLW

iþ1
2
Þ; QLW

iþ1
2
¼ 1

2
½Qn

i þQn
iþ1� �

1

2

Dt
Dx
½FðQn

iþ1Þ � FðQn
i Þ�. ð11Þ
Another, more recent, centred flux is the FORCE flux, which was derived [38] from a deterministic interpre-
tation of the staggered-grid version of Glimm’s method [10] and results in a non-staggered one-step conserva-
tive scheme of the form (6) with intercell numerical flux
Fforce
iþ1

2
¼ 1

4
FðQn

i Þ þ 2FðQLW
iþ1

2
Þ þ FðQn

iþ1Þ �
Dx
Dt
ðQn

iþ1 �Qn
i Þ

� �
ð12Þ
with QLW
iþ1

2
as in (11). For further details on the FORCE flux see [39,41]. See also [4], where convergence is

proved for the case of two non-linear hyperbolic systems, namely the equations of isentropic gas dynamics
and the shallow water equations with a bottom slope source term.

Note that the FORCE flux (12) is the arithmetic average of the Lax-Friedrichs flux (10) and the two-step
Lax-Wendroff flux (11). It is worth noting that there is an analogy between the FORCE scheme [38] and the
composite schemes of Liska and Wendroff [22]. The composite schemes advance the solution a given number
of time steps by the Lax-Friedrichs method and another number of time steps by the Lax-Wendroff method. In
the FORCE scheme the composite aspect is found at the level of the flux, which is precisely the arithmetic mean,
weight of 1/2, of the Lax-Friedrichs and the Lax-Wendroff fluxes. The weight 1/2 is significant, as it is precisely
the value that gives a monotone scheme with the maximum region of monotonicity, without resorting to wave
propagation information, as seen in Fig. 1 discussed in the following section.
3. The generalized FORCE flux

Here, we construct a generalization of the FORCE flux (12) by considering convex averages of fluxes (10)
and (11).

3.1. Convex averages

For our purpose, we first consider the model linear advection equation
otqþ koxq ¼ 0; k : constant. ð13Þ
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Fig. 1. Numerical fluxes as convex averages of the Lax-Friedrichs and Lax-Wendroff fluxes in the c–x plane. Here c is Courant number
and x is a weight, whose constant values 0, 1

2
and 1 reproduce the Lax-Friedrichs, FORCE and Lax-Wendroff fluxes; x ¼ 1

1þjcj reproduces
the Godunov upwind method.
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The physical flux function is a linear function of the unknown q, namely f(q) = kq. The corresponding conser-
vative scheme is written as
qnþ1
i ¼ qn

i �
Dt
Dx
½fiþ1

2
� fi�1

2
� ð14Þ
for which the Lax-Wendroff, Lax-Friedrichs and FORCE fluxes, respectively, are:
f lw
iþ1

2
¼ 1

2
ð1þ cÞðkqn

i Þ þ
1

2
ð1� cÞðkqn

iþ1Þ; ð15Þ

f lf
iþ1

2
¼ ð1þ cÞ

2c
ðkqn

i Þ �
ð1� cÞ

2c
ðkqn

iþ1Þ; ð16Þ

f force
iþ1

2
¼ ð1þ cÞ2

4c
ðkqn

i Þ �
ð1� cÞ2

4c
ðkqn

iþ1Þ; ð17Þ
where c is the CFL or Courant number c ¼ kDt
Dx .

Now consider convex averages of the Lax-Friedrichs and the two-step Lax-Wendroff fluxes as follows:
f ðxÞ
iþ1

2

¼ xf lw
iþ1

2
þ ð1� xÞf lf

iþ1
2

ð18Þ
with the weight x satisfying 0 6 x 6 1. When written in full, (18) reads
f ðxÞ
iþ1

2

¼ 1

2
ð1þ cÞ �ð1� cÞxþ 1

c

� �
ðkqn

i Þ þ
1

2
ð1� cÞ ð1þ cÞx� 1

c

� �
ðkqn

iþ1Þ. ð19Þ
In the c–x plane of Fig. 1 we show special curves x(c) that when substituted into (19) reproduce well-known
numerical fluxes. For example, the bottom horizontal line with constant weight x = 0 gives the Lax-Friedrichs
flux. The top horizontal line with constant weight x = 1 gives the Lax-Wendroff flux. For the constant weight
x ¼ 1

2
, we reproduce the FORCE flux (12) for non-linear systems (5) and the flux (17) for the linear advection

equation (13).
3.2. The generalized FORCE flux: GFORCE

By comparing the coefficients of the flux (19) with those of the Godunov upwind flux
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f GodU
iþ1

2
¼

kqn
i if k > 0;

kqn
iþ1 if k < 0;

�
ð20Þ
we obtain the Courant number dependent weight given by
xgðcÞ ¼
1

1þ jcj ð21Þ
for which the convex average flux (19) reproduces identically the Godunov’s upwind flux. For any constant va-
lue of the weight x with x 6 x 6 1 we have a 3-point scheme (14) whose coefficient of numerical dissipation is
a ¼ 1

2

ð1� c2Þð1� xÞ
c

� �
kDx; ð22Þ
which varies linearly with x, it is a maximum for the Lax-Friedrichs flux (x = 0) and zero for the Lax-Wendr-
off flux (x = 1).

The curve xg(c) divides the unit square of Fig. 1 into two subregions. The region associated with weights
lying above the Godunov weight xg(c) contains non-monotone schemes and the region below xg(c) contains
monotone schemes. The range of constant weights x (no dependence on c), with 0 6 x 6 1

2
, defines a sub-class

of monotone schemes, with the FORCE flux (17) corresponding to the limiting case x ¼ 1
2

, which is the
scheme with the smallest numerical dissipation within the class, and thus the optimal scheme, for which no
dependence on c (no upwind information) is required.

In order to improve upon the centred flux FORCE, that is, reduce its numerical dissipation further, we need
to consider entering the region 1

2
< x 6 1, within which all schemes (19) with constant weight x are non-mono-

tone; monotonicity is lost for the larger range of CFL numbers.
In resolving this problem we consider the following set:
T g ¼ ðc;wÞ : 0 6 c 6 1 and
1

2
< x 6 xgðcÞ ¼

1

1þ jcj

� �
. ð23Þ
This kind of triangular subregion in Fig. 1, with a curved hypotenuse, represents extra numerical dissipation to
that of the FORCE flux, the optimal scheme in its class that makes no explicit use of wave propagation infor-
mation. The upper boundary of Tg, given by (21), gives precisely the Godunov upwind scheme, the monotone
scheme with the smallest coefficient of numerical dissipation, namely
agod ¼
1

2
ð1� jcjÞkDx. ð24Þ
The main objective of this paper is to regain the region Tg, but without having to solve the Riemann prob-
lem, at least not in the conventional sense. We present two ways of disposing of the additional numerical dis-
sipation represented by Tg and contained in the optimal centred method, FORCE. First we propose the
numerical flux
FGFORCE
iþ1

2
¼ xgFLW

iþ1
2
þ ð1� xgÞFLF

iþ1
2
; ð25Þ
where xg has the form
xg ¼
1

1þ cg
. ð26Þ
Here cg is a prescribed Courant number coefficient, with 0 6 cg 6 1, from which a time step is computed, see
Section 4. The flux (25) is called GFORCE, where G may be seen as short for Generalization of the FORCE
flux or a special case of the Godunov flux; it is obvious that for the linear advection equation with constant
coefficient (13) the proposed GFORCE flux (25) reproduces identically the Godunov’s upwind flux (20), fully
recovering the subregion Tg.

For non-linear systems, however, GFORCE does not reproduce the Godunov flux, that is, it does not fully
recover Tg. In practice, nonetheless, GFORCE gives results that are comparable, and sometimes superior, to
those of well established Godunov-type methods with incomplete Riemann solvers, such as the HLL approx-
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imate Riemann solver [14]. The results of GFORCE are still inferior to those of the Godunov method used in
conjunction with complete Riemann solvers. This is most evident for problems in which the resolution of inter-
mediate waves is important. A further step in attempting to fully regain Tg for non-linear systems is offered by
the MUSTA approach [34], the subject of the following section.

4. MUSTA fluxes

In the MUSTA multi-stage approach [34] the numerical flux Fiþ1
2

for the conservative scheme (6) is found by

first approximating numerically the solution of the corresponding Riemann problem (7) to produce two modified

states either side of the cell interface. This part is termed the predictor step. In the corrector step one obtains the
sought intercell numerical flux by evaluating a numerical flux function at the two modified states of the predictor
step. An improved version of the MUSTA original approach using the FORCE flux is given in [33].

4.1. The approach

Let us consider the Riemann problem (7). As the solution is self-similar we may pose the Cauchy problem
on a d–s plane of independent variables, where d denotes the spatial variable, associated with x, and s denotes
the temporal variable, associated with t. Then we approximate the solution of the Riemann problem
Fig. 2.
on d–s
osQþ odFðQÞ ¼ 0; d 2 ð�1;1Þ; s > 0

Qðd; 0Þ ¼
Qn

i if d < 0;

Qn
iþ1 if d > 0

�
9>=
>; ð27Þ
numerically, for which we generate a separate, independent mesh, called hereafter the MUSTA mesh.
Fig. 2 shows the correspondence between the cells i and i + 1 of the computational mesh for (6) on the x–t

plane and the MUSTA mesh on the d–s plane. The d-axis is discretized into a number M of cells of regular size
Dd, where M is a positive integer yet to be specified. Note that cells i and i + 1 in (a) correspond, respectively,
to cells 0 and 1 on the MUSTA mesh in (b), so that the intercell position i + 1/2 in the scheme (6) corresponds
to the interface 1/2.

The initial condition for the numerical problem on the MUSTA mesh is
Q
ð0Þ
l ¼

Qn
i if l 6 0;

Qn
iþ1 if l P 1.

�
ð28Þ
x

t

d

i i+1 0 1 2

τ

Q Q

Q

Q Qi+1i

n n

0 1
(0) (0)

0

(K)
Q1

(K)

C
1/2

a b

k=0

k=1

k=K

(Q
0
(K) Q

1
(K) ),

The MUSTA approach. (a) Initial data ðQn
i ;Q

n
iþ1Þ in original computational mesh on x–t plane, (b) corresponding MUSTA mesh

plane. Sought numerical flux in (6) to be found by resolving evolved data ðQðKÞ0 ;Q
ðKÞ
1 Þ.
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The s-time evolution of the problem (or multi-staging) is performed via the conservative scheme
Q
ðkþ1Þ
l ¼ Q

ðkÞ
l �

Ds
Dd

P
ðkÞ
lþ1

2

� P
ðkÞ
lþ1

2

h i
; ð29Þ
where Ds is the time step in the MUSTA mesh and P(VL,VR) is a two-point monotone numerical flux for the
MUSTA mesh, called the predictor flux, yet to be specified. Note that we are free to choose the spacing Dd on
the MUSTA mesh. We usually take Dd = 1.

The MUSTA time step Ds is computed as Ds ¼ CmustaDd=SðkÞmusta, where Cmusta is the CFL coefficient, which
depends on the specific predictor flux function P used on the MUSTA mesh. Note that Cmusta is identical to cg

in Eq. (26). SðkÞmusta is the maximum signal speed in the MUSTA mesh at stage k and depends on the particular
hyperbolic system under consideration. After a prescribed number of stages K, which corresponds to a pre-
scribed number of s-time steps in the s direction, the predictor procedure yields two new intercell states
Q
ðKÞ
0 and Q

ðKÞ
1 on the MUSTA mesh. See Fig. 2(b).

For a sufficiently large number of stages and a convergent scheme (29) one would obtain an approximation
to the solution of the Riemann problem (7) at two positions left and right close to the interface position, not at
the interface itself. Thus in order to obtain a numerical flux at the interface itself we perform a corrector stage,
whereby the evolved data ðQðKÞ0 ;Q

ðKÞ
1 Þ is resolved via a two-point, monotone numerical flux C(VL,VR), called

the corrector flux. In this manner the sought intercell numerical flux Fiþ1
2

for use in the conservative scheme (6)
is found thus
FMUSTA-K
iþ1

2
¼ C1=2ðQðKÞ0 ;Q

ðKÞ
1 Þ. ð30Þ
Fig. 2 illustrates the MUSTA procedure for an arbitrary number of stages K.
To completely determine the numerical procedure on the MUSTA mesh we must make a choice for the

predictor and corrector fluxes. This is discussed in Section 4.4. In practice we must also (i) choose a mesh,
(ii) prescribe a number K of stages and (iii) specify numerical boundary conditions.

4.2. The MUSTA domain and boundary conditions

Numerical boundary conditions on the MUSTA mesh must be specified, for which we note that the com-
putational domain is somewhat special. See Fig. 2(b). Given the fact that the Riemann-like initial condition
extends the value Qn

i to �1 and the value Qn
iþ1 to1 we would need to apply special boundary conditions of

the transmissive or radiating type, which would allow the unimpeded passage of waves through the bound-
aries. As reported in [34], the choice of a MUSTA domain of just two cells and the application of simple trans-
missive boundary conditions may lead to the loss of monotonicity of the resulting MUSTA numerical
schemes, which is undesirable. See [34].

A possible, and very simple, approach is to select a MUSTA computational domain sufficiently large [33] so
that for a prescribed number of stages K the waves emerging from the initial interface do not reach the numer-
ical boundaries. In this manner one effectively avoids the application of boundary conditions, with the bound-
ary fluxes being evaluated on the nearest cells in the interior of the computational domain. This approach
would be computationally expensive, although it could be improved by choosing a fixed MUSTA mesh of pre-
cisely M = 2K cells, assuming that one uses a CFL coefficient close to unity in (29), with the cell label l sat-
isfying �K 6 l 6 K. Note that unnecessary computations are performed in the regions of silence not affected by
the perturbations caused by the initial discontinuity. A more efficient version of this scheme starts the com-
putations with a MUSTA mesh of 2 cells (0 and 1) and then adds one cell on either side per stage, resulting
in a final mesh that has a V-like shape, leading to a reduction of the computational cost by a factor of two.

The procedure we adopt here is even more efficient, resulting in a saving factor of about four, relative to
that in which a fixed mesh of 2K cells is used. Computations are performed on a stage-dependent domain that
has the shape of a diamond, as suggested by the broken lines of Fig. 2(b). In this case the index l in (29) at the
stage k satisfies
�lQðkÞ þ 1 6 l 6 lQðkÞ; ð31Þ

where lQ(k) is the range for the conserved variable vector Q. In the algorithm there is also a range for the fluxes
P
ðkÞ
lþ1

2

in (29), denoted by lP(k), for which �lP(k) 6 l 6 lP(k).
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An algorithm in the form of a FORTRAN program for the MUSTA-1 scheme is included in the Appendix.

4.3. Example of a MUSTA scheme

The simplest MUSTA scheme is the one-stage scheme, or MUSTA-1, illustrated in Fig. 3. The initial data is

prescribed in the domain of just two cells, namely l = 0 and l = 1. The boundary fluxes P
ð0Þ
�1=2 and P

ð0Þ
3=2, denoted

by broken arrows in Fig. 3, are computed on the initial data, namely P
ð0Þ
�1=2 ¼ FðQð0Þ0 Þ and P

ð0Þ
3=2 ¼ FðQð0Þ1 Þ. The

only non-trivial flux is P
ð0Þ
1=2, which is shown by a full arrow in Fig. 3. Using (29) we evolve Q

ð0Þ
0 and Q

ð0Þ
1 as
Q
ð1Þ
0 ¼ Q

ð0Þ
0 � Dsð0Þ½Pð0Þ1=2 � P

ð0Þ
�1=2�; Q

ð1Þ
1 ¼ Q

ð0Þ
1 � Dsð0Þ½Pð0Þ3=2 � P

ð0Þ
1=2�. ð32Þ
Here Ds(0) is the size of the stable time step calculated on the initial data ðQð0Þ0 ;Q
ð0Þ
1 Þ and the spacing has been

set as Dd = 1.
As K = 1, the multi-staging is complete and the sought numerical flux is obtained by applying a corrector

flux C(VL,VR) to the evolved data Q
ð1Þ
0 and Q

ð1Þ
1 , namely
FMUSTA-1
iþ1

2
¼ C1=2ðQð1Þ0 ;Q

ð1Þ
1 Þ. ð33Þ
A FORTRAN program for GMUSTA-1 is given in the Appendix.

4.4. Predictor and corrector fluxes

In choosing the predictor P(VL,VR) and corrector C(VL,VR) intercell fluxes for the MUSTA mesh, two
properties are sought: (a) simplicity and (b) generality. Given that the MUSTA schemes require a few flux
evaluations, simplicity, that hopefully results in computational efficiency, is required. The sought generality
concerns the possibility of applying the MUSTA schemes to any hyperbolic system determined by the pair
of vectors (Q,F), particularly for systems that do not have a known Riemann solver. Two families of MUSTA
schemes emerge, as discussed below.

The most general MUSTA schemes utilize a simple flux both for the predictor P(VL,VR) and the corrector
C(VL,VR) fluxes. The simplest productive choice of a symmetric flux is the FORCE flux (12) [34,33]. A more
elaborate choice for predictor and corrector fluxes is the GFORCE (25) presented here, which requires a min-
imum of local wave propagation information, similarly to the Rusanov flux [29]. The MUSTA results shown
in this paper are based on the GFORCE flux used both as a predictor and a corrector. The resulting MUSTA
schemes are indeed very general and are upwind. The solution of the corresponding Riemann problem has been
approximated numerically via the multi-staging procedure.

A particular class of MUSTA methods, recently proposed in [40], uses the MUSTA predictor stage (s) to
produce evolved initial conditions, which in the corrector stage are taken as the initial data for a simple lin-
earized Riemann problem, whose solution may be obtained in closed form. For this variant of MUSTA one
requires the complete eigenstructure of the system, which restricts its range of applicability.
Q

Q
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0 1
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d

1/2
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1/2

0 1

0 1
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C (Q 0
(1) , Q1

(1) )

Fig. 3. Illustration of the one-stage MUSTA-1 scheme (K = 1).
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4.5. Choice of the number of stages K

A MUSTA-K requires the choice of the number of multi-stages K, see Fig. 2. With K = 0 one obtains the
original scheme associated with the chosen predictor flux. In theory, for a very large number of stages, under
the assumption that the predictor flux gives a convergent scheme, the resulting MUSTA-K scheme should be
close to the Godunov scheme, the reference first-order method. The experience of exhaustive testing for non-
linear systems in one and multiple space dimensions indicates that the solution of the MUSTA-K scheme con-
verges rapidly to the solution of the Godunov scheme used in conjunction with the exact Riemann solver. This
observed convergence takes place without imposing convergence of the MUSTA multi-staging procedure at
the predictor stage, see Fig. 2(b). The choice K = 1 is recommended for practical applications; the gains in
using GMUSTA-2 and GMUSTA-3 does probably not justify the extra expense. The (limited) experience with
the EVILIN variant [40], also suggests that it is sufficient to take one predictor stage, followed by the corrector
step via a simple linearization. These observations will be supported by the numerical experiments shown in
Section 5.

4.6. Properties of the MUSTA schemes

4.6.1. Relation to Godunov’s flux

As already remarked, the GFORCE flux (25) reproduces identically the Godunov upwind flux (20) for the
linear advection equation with constant coefficient (13). Here we note that this property also holds for the
MUSTA schemes based on the GFORCE flux (25) used as predictor and corrector, when applied to (13). This
is easily proved for an arbitrary number of stages K. Table 1 illustrates the evolution of the initial data states
qL, qR in the MUSTA multi-staging procedure. For a positive wave speed k the left state qL remains unaltered,
while the right state qR changes at every stage. However, the relevant intercell flux pðkÞ1=2 remains constant and
equal to that of the Godunov’s upwind scheme.

As a consequence of the fact that MUSTA-K, for any number of stages K, reproduces the Godunov
schemes identically for the linear advection equation with constant coefficient (13), the MUSTA-K schemes
inherit a number of desirable properties, as seen below.

For the linear advection equation with constant coefficient (13), the scheme is monotone and has the small-
est truncation error within the class of monotone schemes. The leading term of the truncation error has coef-
ficient as given by (24).

4.6.2. Linear stability in multiple dimensions

Regarding stability, for the linear advection equation with constant coefficient (13) the scheme has linear

stability condition
Table
The M
upwin

k

0
1
2
3

0 < jcj 6 1. ð34Þ

The schemes presented here can be extended to solve multi-dimensional problems in a straightforward man-
ner. Let us consider the model linear advection equation with constant coefficients in three space dimensions
o

ot
qþ o

ox
f ðqÞ þ o

oy
gðqÞ þ o

oz
hðqÞ ¼ 0; f ¼ k1q; g ¼ k2q; h ¼ k3q; ð35Þ
1
USTA flux for linear advection using the GFORCE scheme as predictor and corrector, for 3 stages. At each stage, the Godunov

d flux is reproduced identically, see column 5

qðkÞ0 qðkÞ1 pðkÞ�1=2 pðkÞ1=2 pðkÞ3=2

qL qR kqL kqL kqR

qL cqL þ ð1� cÞqð0Þ1 kqL kqL kqð1Þ1

qL cqL þ ð1� cÞqð1Þ1 kqL kqL kqð2Þ1

qL cqL þ ð1� cÞqð2Þ1 kqL kqL kqð3Þ1
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where the coefficients k1, k2, k3 are constant. Without loss of generality they are assumed positive. We consider
unsplit schemes of the form (3), which for 3D Cartesian volumes of dimensions Dx · Dy · Dz read
qnþ1
ijk ¼ qn

ijk �
Dt
Dx
ðfiþ1=2;jk � fi�1=2;jkÞ �

Dt
Dy
ðgijþ1=2;k � gij�1=2;kÞ �

Dt
Dz
ðhijkþ1=2 � hijk�1=2Þ. ð36Þ
The analysis of the linear stability for the schemes in two and three space dimensions is algebraically intrac-
table. Using a numerical procedure [5,41], it is possible to obtain a reliable indication of the stability regions
for the schemes, which for the three-dimensional case can be approximately written as
cx þ cy þ cz 6 1; ð37Þ

where cx = k1Dt/Dx, cy = k2Dt/Dy and cz = k3Dt/Dz are directional Courant numbers.

Regarding the extension of the MUSTA-K schemes to two- and three-dimensional hyperbolic systems
we consider only the straightforward un-split form of finite volume methods, such as (3) or (36), whereby
the MUSTA-K or other fluxes at the appropriate integration points, are the simple one-dimensional fluxes
in the normal direction to the interface at the appropriate integration point. No attempt is made here to
apply special procedures, such as pre-evolution of the initial conditions in the transverse direction, as done
for example in [2], in order increase the stability region, for instance. See also [5,43]. Under such
framework, non-upwind numerical fluxes, such Lax-Friedrichs and FORCE, are unconditionally unstable
[41].
4.6.3. Relation to centred schemes

The MUSTA schemes of this paper and the well-known family of centred schemes [19,25,38,41,21] share
the common property of being capable of solving hyperbolic problems for which Riemann solvers constructed
in the classical manner are not available. Moreover, the zero-stage MUSTA scheme is identical to the scheme
used as a predictor/corrector in the MUSTA scheme. For example, the zero-stage MUSTA constructed on the
basis of the FORCE flux reproduces identically the FORCE scheme, and as remarked in [4], the FORCE
scheme can be interpreted as a single-step, conservative, non-staggered grid version of the first-order mode
of the scheme in [25].

We emphasize however that the MUSTA flux of one stage or more, is upwind, even when using non-
upwind predictor/corrector fluxes. As a consequence, when applied to multiple space dimensions in the
straightforward un-split manner (36), the proposed MUSTA schemes inherit the linear stability properties
of the Godunov’s upwind method. We remind the reader that known first-order symmetric schemes are
unconditionally unstable under this framework [41].
5. Applications of GFORCE and GMUSTA

An attractive feature of the numerical fluxes presented in this paper is the ease with which one can
solve complicated problems. As seen in (4) the computation of the numerical flux only involves evaluation
of the normal flux and in the present approach this is done without having to solve directly the Riemann
problem (7). This means that the method can be applied to general hyperbolic systems in conservation
form. The restriction imposed by a particular hyperbolic system enters in the estimation of a local max-
imum signal speed to compute a stable time step for the scheme. We assume that sufficient information on
the eigenvalues of the system for this purpose is available; for very complicated systems such information
will probably be available by numerical means. Therefore, such procedure can also be applied in the
MUSTA mesh to estimate the speeds SðkÞmusta in the computation of the numerical flux, see (29). Here,
we assess the proposed methods in terms of various test problems for non-linear systems in one and
two space dimensions.
5.1. The Euler equations for compressible materials

The non-linear time-dependent one-dimensional Euler equations are
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otQþ oxFðQÞ ¼ 0;

Q ¼
q

qu

E

2
64

3
75; FðQÞ ¼

qu

qu2 þ p

uðE þ pÞ

2
64

3
75.

9>>>=
>>>;

ð38Þ
Here q, u, p and E are density, particle speed, pressure and total energy, given by
E ¼ q
1

2
u2 þ e

� �
; ð39Þ
where e is the specific internal energy. The eigenvalues of (38) are easily found to be
k1 ¼ u� a; k2 ¼ u; k3 ¼ uþ a; ð40Þ

where a is the speed of sound in the material, which depends on the appropriate equation of state for the
material.

The Euler equations (38), that govern the dynamics of wave propagation in a material, are supplemented by
a thermodynamics statement as to the nature of that material, via a caloric equation of state (EOS), which is a
functional (non-differential) relationship between three variables. A popular choice is the trio q, p and e.
Another choice is furnished by the specific volume v = 1/q, pressure p and specific entropy s. The particular
form of the equation of state determines the form of the sound speed a. Three forms of the equation of state
and the corresponding expressions for the speed of sound are:
p ¼ pðq; eÞ; a ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p
q2 pe þ pq

q
;

e ¼ eðq; pÞ; a ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

p
q2ep
� eq

ep

q
;

p ¼ pðv; sÞ; a ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
�v2pv

p
;

9>>>=
>>>;

ð41Þ
where subscripts denote partial derivatives.
For hyperbolicity of the Euler equations (38) one requires the sound speed to be real, which from (41)

results in the condition
pv ¼ �evvðv; sÞ < 0. ð42Þ
A further restriction on the EOS results from imposing that the acoustic characteristic fields associated with
the eigenvalues k1 = u � a and k3 = u + a be genuinely non-linear. This is usually known as the convexity con-
dition for the Euler equations and may be expressed as
evvvðv; sÞ 6¼ 0. ð43Þ
More general materials not obeying the convexity assumption may also be considered, in which case, complex
wave patterns may occur, such as rarefaction shock waves and composite waves. See [24].

Upwind Godunov-type methods require the solution of the Riemann problem for (38) along with a general
equation of state (41). This can be costly, complex or impossible. For background see the works of Colella and
Glaz [6], Glaister [9], Menikoff and Plohr [24] and Quartapelle et al. [27], amongst others. The methods of this
paper do not require such solution and are directly applicable.

As an example we consider a simple generalization of the ideal gas equation of state, the so-called covolume

equation of state,
e ¼ pð1� bqÞ
qðc� 1Þ ; a ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cp

ð1� bqÞq

r
; ð44Þ
where c is the ratio of specific heats (assumed constant) and b is called the covolume, which in SI units has
dimensions of m3 kg�1. The conventional ideal gas case is obtained from (44) with b = 0. Equation of state
(44) applies to dense gases at high pressure, for which the volume occupied by the molecules themselves is
no longer negligible. There is therefore a reduction in the volume available to molecular motion. Sometimes,
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this equation is also called the Noble–Abel equation of state. In the study of propulsion systems, gaseous com-
bustion products at very high densities are reasonably well described by the covolume equation of state. In its
simplest version, the covolume b is a constant and is determined experimentally or from equilibrium thermo-
chemical calculations. For an exact Riemann solver see [35].
5.2. Euler numerical examples

Here we assess the performance of the proposed MUSTA methods for four test problems for the time-
dependent one-dimensional Euler equations, three for ideal gases and one for covolume gases in a problem
with moving boundaries.

Test 1: Low density flow. We solve the one-dimensional Euler equations for an ideal gas with c = 1.4 in the
domain [0, 1]. The initial condition consists of two constant states separated by a discontinuity positioned at
x = 1/2. To the left of the discontinuity the initial values for density, velocity and pressure are qL = 1.0,
uL = �2.0, pL = 0.4 and to the right of the discontinuity they are qR = 1.0, uR = 2.0, pR = 0.4. The purpose
of this test problem is to assess the performance of the methods proposed in this paper for computing low-

density flows, for which it is well known that linearized Riemann solvers, for example, fail [8], unless adhoc
fixes are implemented.

Computed results for density and velocity are shown in Fig. 4, computed with the GMUSTA-1 scheme
on a mesh of 100 cells and a CFL coefficient of 0.9. The exact solution (full line) is also shown, for com-
parison. The results are satisfactory, in particular for the velocity. We remark that for this test problem,
even non-linear complete Riemann solvers, such as HLLC, do not give an accurate solution for the veloc-
ity in the middle region of stationary flow. See results of Chapter 10 of [39]. Computed results with
GMUSTA-2 and GMUSTA-3 are very close to those displayed in Fig 4 and are omitted. We observe
convergence of the GMUSTA-K schemes to the solution obtained with the Godunov method in conjunc-
tion with the exact Riemann solver (the reference solution); solutions for K = 1 and K = 2 are already
very close to the reference solution, which suggests that GMUSTA-1 is a scheme that could be used in
practice.

Test 2: Transonic flow. We solve the one-dimensional Euler equations for an ideal gas with c = 1.4 in the
domain [0, 1]. The initial condition consists of two constant states separated by a discontinuity positioned at
x = 0.3. To the left of the discontinuity the initial values for density, velocity and pressure are qL = 1.0,
uL = 0.75, pL = 1.0 and to the right of the discontinuity they are qR = 0.125, uR = 0.0, pR = 0.1. The purpose
of this test problem is to assess the performance of the methods proposed in this paper for computing tran-
sonic flows, for which it is well known that linearized Riemann solvers fail, unless adhoc entropy fixes are
implemented.

Computed results for density and velocity are shown in Fig. 5 using the GMUSTA-1 scheme on a mesh of
100 cells and a CFL coefficient of 0.9. For comparison, we also show the exact solution (line) and the numer-
ical solution obtained with the Godunov method in conjunction with the exact Riemann solver. We note that
for the shock and the contact waves the numerical results from GMUSTA-1 and the Godunov method with
the exact Riemann solver are virtually indistinguishable. At the sonic point the GMUSTA-1 solution is very
smooth and more accurate than that of the Godunov scheme with the exact Riemann solver, but it is less accu-
rate near the head and tail of the rarefaction. We note that the MUSTA approach does not require special
treatment of sonic points and yet good results are obtained automatically for the class of problems with sonic
points.

Test 3: Blast wave interaction. We solve the one-dimensional Euler equations for an ideal gas with
c = 1.4 in a domain [0, 1]. The initial condition [47] consists of constant density q = 1, constant velocity
u = 0 and a discontinuous distribution of pressure: pL = 1000 in [0,1/10], pM = 0.01 in (1/10, 9/10] and
pR = 100 in (9/10, 1]. For a detailed discussion on the solution of this problem see [47]. The purpose of
this test is to assess the robustness and accuracy of the proposed methods for resolving very strong shock
waves and multiple wave–wave and wave–boundary interactions. Since the work of Woodward and Colella
[47] it has become standard to solve this problem on a mesh of 3000 cells and display results at the output
time t = 0.038.
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In Fig. 6 we summarize some of the computations we have performed for this test problem, zooming into
the critical region, where the largest differences between schemes are observed. First we note that the results of
GMUSTA-1 and those of the Godunov method with the exact Riemann solver (our reference solution) are
virtually indistinguishable. For comparison, we also show the results of the Lax-Friedrichs, FORCE,
GFORCE schemes. It is seen that GFORCE is clearly more accurate than the other simple methods. Calcu-
lations omitted here show that GFORCE is even more accurate than incomplete Riemann solvers, such as the
HLL approximate Riemann solver [14].

Test 4: Lagrange’s problem with covolume. The Lagrange’s problem is a test for both Euler solvers with the
covolume equation of state (44) as well as for testing moving boundary schemes. The problem consists of a
tube of constant, circular cross-sectional area with a combustion chamber at the left end, filled with stationary
combustion products at high density and pressure. At the right-hand end of the combustion chamber is the
base of a piston of a given mass, assumed to occupy the full cross-sectional area of the tube, so that the gases
are sealed. See Table 2. A theoretical solution to this problem was obtained by Love and Pidduck [23], and
Table 3 gives this for 10 values of time.
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Table 2
Data for the Lagrange’s problem

Tube total length (m) 7.698
Tube radius (m) 0.075
Combustion chamber length (m) 1.698
Initial gas density in chamber (kg/m3) 400.0
Initial gas speed in chamber (m/s) 0
Initial gas pressure in chamber (MPa) 621.0
Ratio of specific heats 11/9
Covolume (m3/kg) 0.001
Total mass of piston (kg) 50

Table 3
Theoretical solution for the Lagrange’s problem [23]

Time, ms Piston base position Piston speed Breech pressure Piston base pressure

0.4772 1.72165 99.64 621.06 554.17
0.9544 1.78965 187.70 621.06 499.84
1.4785 1.91165 275.40 507.10 451.01
2.1170 2.11965 371.80 408.84 402.27
2.8980 2.45165 466.20 325.19 291.26
3.8590 2.94065 550.40 255.95 212.84
5.1540 3.71865 632.50 169.46 150.53
7.1370 5.05365 718.30 106.50 101.10

10.2300 7.41665 801.30 63.74 57.04
10.5800 7.69765 807.70 60.88* 54.19

Value * obtained from interpolation procedure using a reference numerical solution with the WAF scheme [36].
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At time t = 0 one assumes instantaneous combustion in the chamber and the piston is free to move
under the action of the high pressure. At time t = 10.58 ms the base of the piston leaves the end of
the tube at x = 7.698 m at an exit speed of V = 807.70 m/s. Fig. 7 shows results, as functions of time,
for the piston base position, the piston speed, the pressure at the centre of the tube at x = 0 (the breech),
and the pressure at the base of the piston. The numerical solution (full line) is compared with the theo-
retical solution (symbols) given in Table 3. The numerical results were obtained from a TVD extension of
the MUSTA scheme, starting the computations with an initial mesh of M = 100 cells and then adding cut

cells as the computational domain was enlarged due to the travelling of the piston towards the exit of the
tube. As seen in Fig. 7, the agreement between the numerical and the theoretical solution is very
satisfactory.

We have also solved this problem using the WAF method [36] in conjunction with the exact Riemann sol-
ver, using the WAF method with the HLLC Riemann solver [45] and using the Random Choice Method [37],
obtaining similar results to those reported here. The comparison of results is omitted.
5.3. One-dimensional ideal magnetohydrodynamics

We solve the one-dimensional MHD equations:
otQþ oxFðQÞ ¼ 0;

Q ¼

q

qu

qv

qw

E

By

Bz

2
666666666664

3
777777777775
; F ¼

qu

qu2 þ pT � B2
x

quv� BxBy

quw� BxBz

ðE þ pT Þu� BxðuBx þ vBy þ wBzÞ
Byu� Bxv

Bzu� Bxw

2
666666666664

3
777777777775
;

9>>>>>>>>>>>>>=
>>>>>>>>>>>>>;

ð45Þ
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where B = (Bx,By,Bz) is the magnetic field,
pT ¼ p þ 1

2
B2; E ¼ p

ðc� 1Þ þ
1

2
qðu2 þ v2 þ w2Þ þ 1

2
B2; ð46Þ
p is the gasdynamical pressure, q is density, E is total energy and u, v, w are velocity components.
The one-dimensional MHD system is hyperbolic with the eigenvalues given by
k1 ¼ u� cf ; k2 ¼ u� cA; k3 ¼ u� cs; k4 ¼ u; k5 ¼ uþ cs; k6 ¼ uþ cA; k7 ¼ uþ cf .
Here cf, cs are fast and slow magnetoacoustic velocities, cA is the Alfven velocity.
We solve the Riemann problem for (45) with the parameters corresponding to the first test problem of Brio

and Wu [3]. The computational domain is the interval [�0.5,0.5], the ratio of specific heats is set to c = 2. The
initial conditions are as follows:



Fig. 8
Refere

420 E.F. Toro, V.A. Titarev / Journal of Computational Physics 216 (2006) 403–429
Bx ¼ 0:75; u ¼ v ¼ w ¼ 0; ðq; p;By ;BzÞ ¼
ð1:0; 1:0;þ1:0; 0:0Þ x < 0;

ð0:125; 0:1;�1:0; 0:0Þ x > 0.

�
ð47Þ
We obtain a reference solution of (45) with the initial data (47) by applying the GMUSTA scheme on the very
fine mesh of 10,000 cells. Comparing this reference solution with those reported in the current literature
[3,16,17], we observe that a structure of the solution accepted as correct is obtained, which consists of a left
travelling fast rarefaction wave, an intermediate shock and slow rarefaction wave as well as a right-travelling
contact discontinuity, a slow shock and a fast rarefaction wave. The left travelling intermediate shock and the
slow rarefaction wave form a feature that has been termed compound wave in the literature. Generally speaking
the outlined structure of the solution is not stable with respect to tangential disturbances. If the complete
three-dimensional MHD system is solved and the flow contains tangential disturbances, the so-called com-
pound wave will decay and a different structure of the solution will be observed. See [1,17] for a more detailed
discussion. For the one-dimensional system (45), however, the structure of the solution outlined above, is ac-
cepted as correct.
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Figs. 8 and 9 show computed results using the schemes presented in this paper using a mesh of 400
cells and a CFL coefficient CFL = 0.9. The GFORCE results are shown by the dashed line, the
GMUSTA-1 results are shown by symbols and the reference solution is shown by the full line. We con-
sider both numerical schemes to give satisfactory results, all main features of the solution are captured. As
expected, the GMUSTA-1 results are more accurate than the GFORCE results, particularly for the con-
tact wave.

For comparison with other simple methods, we have also computed the solution using the Lax-Friedrichs
scheme and the FORCE scheme, which is algebraically equivalent to the two-step staggered grid Lax-Fried-
richs method. The results presented in Fig. 10 for CFL = 0.9 show that the schemes of this paper are signif-
icantly more accurate, for all waves in the solution.

Moreover, as one would expect from the analysis of Fig. 1, the observed difference in accuracy
increases for small Courant numbers. Fig. 11 shows a comparison of solutions for CFL = 0.2 and 400
cells. Large differences are observed. The two centred methods are badly affected by small CFL numbers.
The significant improvement from Lax-Friedrichs to GFORCE and GMUSTA, specially for small CFL
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numbers, is explained by the discussion of Section 3.2, the local truncation error of the present schemes
does not depend on the reciprocal of the time step. As a result, the accuracy of the GFORCE scheme,
and thus GMUSTA, does not degrade much for small Courant numbers.
5.4. Multiple space dimensions and high order

The numerical fluxes proposed in this paper can be used directly in unsplit, or simultaneous updating

finite volume schemes of the form (3), see also (36). The present schemes can also be used in the frame
of discontinuous Galerkin approaches to obtain schemes of higher order of accuracy, along with various
ways of constructing non-oscillatory versions of the schemes. In their simplest form, the resulting multi-
dimensional schemes use the appropriate one-dimensional fluxes in the direction normal to the cell inter-
face at the appropriate integration point. In this framework, any existing finite volume code based on
some Riemann solver can be easily modified by replacing the numerical flux by the GMUSTA flux of this
paper.
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5.4.1. High-order WENO methods

The GMUSTA fluxes can be used to construct schemes of very high order of accuracy in space and time.
Here we illustrate this in the frame of WENO schemes with Runge–Kutta time stepping, as applied to the
two-dimensional Euler equations for ideal gases. We use GMUSTA as the building block in the state-of-art
weighted essentially non-oscillatory (WENO) schemes. For a detailed description of finite-volume WENO
schemes in two space dimensions see [30] and references therein and [31] for the three-dimensional
extension.

In the WENO–GMUSTA scheme the evaluation of the numerical flux consists of two steps. First the spa-
tial integrals over cell faces are discretized by using a certain Gaussian quadrature. In this paper we use the
two-point quadrature. Next, for each quadrature point the standard WENO reconstruction procedure pro-
vides left and right boundary extrapolated values. The resulting discontinuity is resolved by means of the
so-called numerical flux, which is a two-point function, also called the building block of the scheme. Different
monotone numerical fluxes can be used as the building block. For example, Shi and Shu [30] use the Rusanov
flux as the building block. In this paper, we replace the conventional two-point numerical flux used as the
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building block in WENO (e.g. Rusanov or HLLC flux) by the two-point GMUSTA flux and denote the result-
ing scheme as the WENO–GMUSTA scheme.

In all examples of this section, fifth-order spatial reconstruction and third-order time integrations are
used, see [30,31] for details. We note that in two space dimensions the variant of the WENO scheme from
[31] is different from that of [30] in that it uses a two-point Gaussian quadrature instead of a three point
quadrature.

5.4.2. Computation of double Mach reflection

We solve the two-dimensional compressible Euler equations for an ideal gas in a rectangular domain. The
formulation of the Mach reflection problem, computational setup and detailed discussion of the flow physics
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Fig. 12. Double Mach reflection test problem. Results from the WENO–GMUSTA-1 scheme. Meshes of 480 · 120 (top), 960 · 240
(middle) and 1920 · 480 (bottom) cells are used. A number of 30 contour lines from 2 to 22 are displayed.
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can be found in [47]. At a given output time a complicated flow pattern forms containing two Mach shocks,
two slip surfaces and a jet. Figs. 12 and 13 show numerical results from the WENO scheme with the
GMUSTA-1 flux of this paper on three meshes: 480 · 120, 960 · 240 and 1920 · 480 cells. We observe that
the scheme produces the flow pattern generally accepted in the present literature [47,30] as correct, on all
meshes. All discontinuities are well resolved and correctly positioned.

Delicate features of the flow, such as slip surfaces, are generally more difficult to resolve accurately, partic-
ularly when using symmetric methods or upwind methods with incomplete Riemann solvers. The results of the
present GMUSTA-1 scheme are comparable to those with the complete HLLC Riemann solver [45] found in
Figs. 2 and 4 of [31], and not reproduced here.
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In order to assess the efficiency of the methods presented in this paper in the context of realistic computa-
tions we have solved the double Mach reflection problem described above using the WENO method and the
high-order ADER method [44,32] on the mesh of 240 · 60 cells. We tested the GMUSTA fluxes of this paper
against a standard complete approximate Riemann solver, the HLLC solver [45,42], which is used to normal-
ize the computing times of other schemes. For the WENO method just described the normalized computing
time was 1.0, of course; for the WENO + GMUSTA-1 scheme the figure was 1:125, for WENO + GMUSTA-
2 was 1.30 and for WENO + GMUSTA-3 was 1.54. It is worth remarking that for the ADER schemes the
CPU times are generally smaller and so are the differences between the MUSTA fluxes and HLLC. Normal-
izing again by the ADER + HLLC scheme we obtained the figure 1:0 for HLLC, 1.06 for GMUSTA-1, 1.10
for GMUSTA-2 and 1.28 for GMUSTA-3. Numerical experiments show that GMUSTA-1 gives results that
are comparable to those of the Godunov method in conjunction with the exact Riemann solver or complete
approximate Riemann solvers. Thus we conclude that for the WENO method, GMUSTA-1 is about 12%
more expensive than HLLC and for the ADER method, GMUSTA-1 is about 6% more expensive than
HLLC. These increases are modest and given the simplicity and generality of the fluxes presented, they are
justified.
6. Summary and conclusions

We have first presented a new upwind numerical flux, called GFORCE, that is a generalization of the
FORCE symmetric flux. Then we have incorporated this flux into the MUSTA framework, leading to
schemes of accuracy that is comparable to that of complete Riemann solvers for non-linear hyperbolic
systems. But unlike conventional upwind methods with complete or incomplete Riemann solvers, our
schemes are applicable to general systems of hyperbolic conservation laws. For a given vector of con-
served variables, a corresponding flux vector and appropriate closure relations, the proposed MUSTA
numerical flux is most easily computed. For multi-dimensional problems the unsplit versions of the
schemes are linearly stable, unlike those of well-known symmetric fluxes such as Lax-Friedrichs and
FORCE. The schemes are directly applicable to problems on general meshes. The fluxes have been used
as building blocks for high-order non-linear schemes via the TVD approach and the WENO approach.
The performance of the new schemes has been demonstrated via the Euler equation for ideal and covo-
lume gases in one and two space dimensions, and for the equations of Magnetohydrodynamics in one
space dimension.

For the test problems considered we have seen that the quality of the results of our methods is comparable
to that of the best methods available, namely those for which there are complete non-linear Riemann solvers
available. Our methods however are computationally more expensive, of the order of 12% for WENO meth-
ods and of the order of 6% for ADER methods. We believe that this modest increase in computational time far
outweights the generality and the ease with which the methods of this paper can be applied to difficult prob-
lems, especially to those for which no Riemann solvers are currently available. Our methods are suitable for
implementation in an industrial context, where there will necessarily be a continuous revision/upgrading of
mathematical models, with the associated tedious (if possible at all) task of rederiving the numerical flux each
time the mathematical model is changed.
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Appendix. MUSTA-1 program for the Euler equations
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